
EMOTION DETECTION

MODEL
A PROJECT REPORT

In partial fulfilment of the requirements for the award of the degree

BACHELOR OF TECHNOLOGY

IN

COMPUTER SCIENCE AND ENGINEERING

(ARTIFICIAL INTELLIGENCE & MACHINE LEARNING)

Under the guidance of

DHRUBA RAY

BY

ARINDAM SAHOO

ARNAB GHORUI

ARANYA JANA

SUJATA MONDAL

NARULA INSTITUTE OF TECHNOLOGY

In association with

(ISO9001:2015)

SDF Building, Module #132, Ground Floor, Salt Lake City, GP Block, Sector V, Kolkata, West Bengal 700091

(Note: All entries of the proforma of approval should be filled up with
appropriate and complete information. Incomplete proforma of approval in

any respect will be summarily rejected.)

1. Title of the Project: EMOTION DETECTION MODEL
2. Project Members: ARINDAM SAHOO

ARNAB GHORUI
ARANYA JANA
SUJATA MONDAL

3. Name of Guide: MR. DHRUBA RAY
4. Address: Ardent Computech Pvt. Ltd

(An ISO 9001:2015 Certified)
SDF Building, Module #132, Ground Floor, Salt
Lake City, GP Block, Sector V, Kolkata, West
Bengal, 700091

Project Version Control History

Version Primary Author Description of
Version

Date Completed

Final ARINDAM SAHOO

ARNAB GHORUI

ARANYA JANA

SUJATA MONDAL

 Project Report 10TH APRIL,2023

Signature of Team Member Signature of Approver

Date: Date:

For Office Use Only

MR. DHRUBA RAY

DECLARATION

We hereby declare that the project work being presented in the project proposal

entitled “EMOTION DETECTION MODEL” in partial fulfilment of the

requirements for the award of the degree of BACHELOR OF TECHNOLOGY

at ARDENT COMPUTECH PVT. LTD, SALTLAKE, KOLKATA, WEST

BENGAL, is an authentic work carried out under the guidance of MR. DHRUBA

A RAY. The matter embodied in this project work has not been submitted

elsewhere for the award of any degree of our knowledge and belief.

Date:

Name of the Student: ARINDAM SAHOO

ARNAB GHORUI

ARANYA JANA

SUJATA MONDAL

Signature of the students:

Ardent Computech Pvt. Ltd (An ISO 9001:2015 Certified) SDF Building, Module

#132, Ground Floor, Salt Lake City, GP Block, Sector V, Kolkata, West Bengal 700091

CERTIFICATE
This is to certify that this proposal of minor project entitled “EMOTION

DETECTION MODEL” is a record of work, carried out by ARINDAM

SAHOO, ARNAB GHORUI, ARANYA JANA, SUJATA MONDL under my

guidance at ARDENT COMPUTECH PVT. LTD. In my opinion, the report in

its present form is in partial fulfilment of the requirements for the award of the

degree of BACHELOR OF TECHNOLOGY and as per regulations of the

ARDENT®. To the best of my knowledge, the results embodied in this report, are

original in nature and worthy of incorporation in the present version of the report.

Guide / Supervisor

--

MR. DHRUBA RAY

Ardent Computech Pvt. Ltd (An ISO 9001:2015 Certified) SDF Building,

Module #132, Ground Floor, Salt Lake City, GP Block, Sector V, Kolkata, West Bengal 700091

ACKNOWLEDGEMENT

Success of any project depends largely on the encouragement and guidelines of
many others. I take this sincere opportunity to express my gratitude to the people
who have been instrumental in the successful completion of this project work.

I would like to show our greatest appreciation to Mr. DHRUBA RAY, Project
Engineer at Ardent, Kolkata. I always feel motivated and encouraged every time
by his valuable advice and constant inspiration; without his encouragement and
guidance this project would not have materialized.

Words are inadequate in offering our thanks to the other trainees, project assistants
and other members at Ardent Computech Pvt. Ltd. for their encouragement and
cooperation in carrying out this project work. The guidance and support received
from all the members and who are contributing to this project, was vital for the
success of this project.

CONTENTS
 Overview
 History of Python
 Features of Python
 Environment Setup
 Basic Syntax
 Variable Types
 Functions
 Modules
 Packages
 Artificial Intelligence

o Deep Learning
o Neural Networks
o Machine Learning

 Machine Learning
o Supervised and Unsupervised Learning
o NumPy
o SciPy
o Scikit-learn
o Pandas
o Regression Analysis
o Matplotlib
o Clustering

 EMOTION DETECTION MODEL
o Introduction
o Problem Statement
o Advantages & Disadvantages
o Future Scope

OVERVIEW

Python is a high-level, interpreted, interactive and object-oriented scripting language. Python
is designed to be highly readable. It uses English keywords frequently where as other
languages use punctuation, and has fewer syntactical constructions than other languages.

Python is interpreted: Python is processed at runtime by the interpreter. You do not need
to compile your program before executing it. This is similar to Perl and PHP.

Python is Interactive: You can actually sit at a Python prompt and interact with the
interpreter directly to write your programs.

Python is Object-Oriented: Python supports Object-Oriented style or technique of
programming that encapsulates code within objects.

Python is a Beginner's Language: Python is a great language for the beginner-level
programmers and supports the development of a wide range of applications from simple
text processing to WWW browsers to games.

HISTORY OF PYTHON

Python was developed by Guido van Rossum in the late eighties and early nineties at the
National Research Institute for Mathematics and Computer Science in the Netherlands.
Python is derived from many other languages, including ABC, Modula-3, C, C++, Algol-68,
Small Talk, UNIX shell, and other scripting languages. Python is copyrighted. Like Perl,
Python source code is now available under the GNU General Public License (GPL). Python
is now maintained by a core development team at the institute, although Guido van Rossum
still holds a vital role in directing its progress.

FEATURES OF PYTHON

Easy-to-learn: Python has few Keywords, simple structure and clearly defined syntax. This
allows a student to pick up the language quickly.

Easy-to-Read: Python code is more clearly defined and visible to the

eyes. Easy -to-Maintain: Python's source code is fairly easy-to-maintain.

A broad standard library: Python's bulk of the library is very portable and cross platform
compatible on UNIX, Windows, and Macintosh.

Interactive Mode: Python has support for an interactive mode which allows interactive testing
and debugging of snippets of code.

Portable: Python can run on the wide variety of hardware platforms and has the same
interface on all platforms.

Extendable: You can add low level modules to the python interpreter. These modules enables
programmers to add to or customize their tools to be more efficient.

Databases: Python provides interfaces to all major commercial databases.

GUI Programming: Python supports GUI applications that can be created and ported to many
system calls, libraries, and windows systems, such as Windows MFC, Macintosh, and the X
Window system of Unix.

Scalable: Python provides a better structure and support for large programs than shell
scripting.

Apart from the above-mentioned features, Python has a big list of good features, few are
listed below:

• It support functional and structured programming methods as well as OOP. • It
can be used as a scripting language or can be compiled to byte code for building
large applications.
• It provides very high level dynamic datatypes and supports dynamic type checking.
• It supports automatic garbage collections.
• It can be easily integrated with C, C++, COM, ActiveX, CORBA and JAVA.

ENVIRONMENT SETUP

Open a terminal window and type "python" to find out if it is already installed and which
version is installed.

• UNIX (Solaris, Linux, FreeBSD, AIX, HP/UX, SunOS, IRIX, etc.) •

Win 9x/NT/2000

• Macintosh (Intel, PPC, 68K)

• OS/2

• DOS (multiple versions)

• PalmOS

• Nokia mobile phones

• Windows CE

• Acorn/RISC OS

BASIC SYNTAX OF PYTHON PROGRAM

Type the following text at the Python prompt and press the Enter –

>>> print "Hello, Python!"

If you are running new version of Python, then you would need to use print statement with
parenthesis as in print("Hello, Python!").
However in Python version 2.4.3, this produces the following result –

Hello, Python!

Python Identifiers

A Python identifier is a name used to identify a variable, function, class, module or other
object. An identifier starts with a letter A to Z or a to z or an underscore (_) followed by zero
or more letters, underscores and digits (0 to 9).
Python does not allow punctuation characters such as @, $, and % within identifiers. Python
is a case sensitive programming language.

Python Keywords

The following list shows the Python keywords. These are reserved words and you cannot use
them as constant or variable or any other identifier names. All the Python keywords contain
lowercase letters only.

And, exec, not
Assert, finally, or
Break, for, pass
Class, from, print
continue, global, raise
def, if, return
del, import, try
elif, in, while
else, is, with
except, lambda, yield

Lines & Indentation
Python provides no braces to indicate blocks of code for class and function definitions or
flow control. Blocks of code are denoted by line indentation, which is rigidly enforced. The
number of spaces in the indentation is variable, but all statements within the block must be
indented the same amount. For example –

if True:
print "True"

else:
print "False"

Command Line Arguments

Many programs can be run to provide you with some basic information about how they
should be run. Python enables you to do this with -h −

$ python-h
usage: python [option]...[-c cmd|-m mod | file |-][arg]...

Options and arguments (and corresponding environment variables):

-c cmd: program passed in as string(terminates option list)

-d : debug output from parser (also PYTHONDEBUG=x)

-E : ignore environment variables (such as PYTHONPATH)

-h : print this help message and exit [etc.]

VARIABLE TYPES

Variables are nothing but reserved memory locations to store values. This means that when
you create a variable you reserve some space in memory.

Assigning Values to Variables

Python variables do not need explicit declaration to reserve memory space. The declaration
happens automatically when you assign a value to a variable. The equal sign (=) is used to
assign values to variables.

counter=10 # An integer assignment
weight=10.60 # A floating point
name="Ardent" # A string

Multiple Assignment

Python allows you to assign a single value to several variables simultaneously. For example −
a = b = c = 1
a,b,c = 1,2,"hello"

Standard Data Types

The data stored in memory can be of many types. For example, a person's age is stored as a
numeric value and his or her address is stored as alphanumeric characters. Python has five
standard data types −

 String
 List
 Tuple
 Dictionary
 Number

Data Type Conversion

Sometimes, you may need to perform conversions between the built-in types. To convert
between types, you simply use the type name as a function.

There are several built-in functions to perform conversion from one data type to another.

FUNCTIONS

Defining a Function

• def function name(parameters):
"function_docstring"
function suite
return [expression]

Pass by reference vs Pass by value

All parameters (arguments) in the Python language are passed by reference. It means if you
change what a parameter refers to within a function, the change also reflects back in the
calling function. For example –

Function definition is here

def change me(mylist):
"This changes a passed list into this function"
mylist.append([1,2,3,4]);
print"Values inside the function: ",mylist
return

Now you can call changeme function

mylist=[10,20,30];
change me(mylist);
print” Values outside the function: ",mylist

Here, we are maintaining reference of the passed object and appending values in the same
object. So, this would produce the following result −

Values inside the function: [10, 20, 30, [1, 2, 3, 4]]
Values outside the function: [10, 20, 30, [1, 2, 3, 4]]

Global vs. Local variables

Variables that are defined inside a function body have a local scope, and those defined
outside have a global scope . For Example

total=0; # This is global variable.

Function definition is here
def sum(arg1, arg2):

Add both the parameters and return them."

total= arg1 + arg2; # Here total is local variable.
print"Inside the function local total: ", total
return total;

Now you can call sum function

sum(10,20);
Print”Outside the function global total: ", total

When the above code is executed, it produces the following result −

Inside the function local total: 30
Outside the function global total: 0

MODULES

A module allows you to logically organize your Python code. Grouping related code into a
module makes the code easier to understand and use. A module is a Python object with
arbitrarily named attributes that you can bind and reference.

The Python code for a module named aname normally resides in a file named aname.py.
Here's an example of a simple module, support.py

def print_func(par):
print"Hello : ", par
return

The import Statement

You can use any Python source file as a module by executing an import statement in some
other Python source file. The import has the following syntax –

Import module1 [, module2 [… moduleN]

PACKAGES

A package is a hierarchical file directory structure that defines a single Python application
environment that consists of modules and sub packages and sub-subpackages, and so on.

Consider a file Pots.py available in Phone directory. This file has following line of source
code −
def Pots ():

print "I'm Pots Phone"

Similar way, we have another two files having different functions with the same name as
above –

Phone/Isdn.py file having function Isdn ()
Phone/G3.py file having function G3 ()

Now, create one more file __init__.py in Phone directory −

Phone/__init__.py

To make all of your functions available when you've imported Phone, you need to put
explicit import statements in __init__.py as follows −
from Pots import Pots
from Isdn import Isdn
from G3 import

ARTIFICIAL INTELLIGENCE

Introduction

According to the father of Artificial Intelligence, John McCarthy, it is “The science and
engineering of making intelligent machines, especially intelligent computer programs”.

Artificial Intelligence is a way of making a computer, a computer-controlled robot, or a
software think intelligently, in the similar manner the intelligent humans think.

AI is accomplished by studying how human brain thinks, and how humans learn, decide, and
work while trying to solve a problem, and then using the outcomes of this study as a basis of
developing intelligent software and systems.

The development of AI started with the intention of creating similar intelligence in machines
that we find and regard high in humans.

Goals of AI

To Create Expert Systems − The systems which exhibit intelligent behaviour, learn,
demonstrate, explain, and advice its users.
To Implement Human Intelligence in Machines − Creating systems that understand, think,
learn, and behave like humans.

Applications of AI

AI has been dominant in various fields such as:-

Gaming − AI plays crucial role in strategic games such as chess, poker, tic-tac-toe, etc., where
machine can think of large number of possible positions based on heuristic knowledge.

Natural Language Processing − It is possible to interact with the computer that understands
natural language spoken by humans.

Expert Systems − There are some applications which integrate machine, software, and special
information to impart reasoning and advising. They provide explanation and advice to the
users.

Vision Systems − These systems understand, interpret, and comprehend visual input on the
computer.

For example: A spying aeroplane takes photographs, which are used to figure out spatial
information

 Or map of the areas.

 Doctors use clinical expert system to diagnose the patient.

 Police use computer software that can recognize the face of criminal with the stored
 Portrait made by forensic artist.

Speech Recognition − Some intelligent systems are capable of hearing and comprehending
the language in terms of sentences and their meanings while a human talks to it. It can handle
different accents, slang words, noise in the background, change in human’s noise due to cold,
etc.

Handwriting Recognition − The handwriting recognition software reads the text written on
paper by a pen or on screen by a stylus. It can recognize the shapes of the letters and convert
it into editable text.

Intelligent Robots − Robots are able to perform the tasks given by a human. They have sensors
to detect physical data from the real world such as light, heat, temperature, movement, sound,
bump, and pressure. They have efficient processors, multiple sensors and huge memory, to
exhibit intelligence. In addition, they are capable of learning from their mistakes and they can
adapt to the new environment.

Application of AI

Deep Learning
Deep learning is a subset of machine learning. Usually, when people use the term deep learning,
they are referring to deep artificial neural networks, and somewhat less frequently to deep
reinforcement learning.
Deep learning is a class of machine learning algorithms that:

 Use a cascade of multiple layers of nonlinear processing units for feature extraction and
transformation. Each successive layer uses the output from the previous layer as input.

 Learn in supervised (e.g., classification) and/or unsupervised (e.g., pattern analysis)
manners

 Learn multiple levels of representations that correspond to different levels of abstraction;
the levels form a hierarchy of concepts.

 Use some form of gradient descent for training via backpropagation.

NEURAL NETWORKING

Artificial neural networks (ANNs) or connectionist systems are computing systems inspired by
the biological neural networks that constitute animal brains. Such systems learn (progressively
improve performance on) tasks by considering examples, generally without task-specific
programming

An ANN is based on a collection of connected units or nodes called artificial neurons (analogous
to biological neurons in an animal brain). Each connection between artificial neurons can transmit
a signal from one to another.

MACHINE LEARNING

Machine learning is a field of computer science that gives computers the ability to learn without
being explicitly programmed.
Evolved from the study of pattern recognition and computational learning theory in artificial
intelligence, machine learning explores the study and construction of algorithms that can learn
from and make predictions on data.

INTRODUCTION TO MACHINE LEARNING

Machine learning is a field of computer science that gives computers the ability to learn without
being explicitly programmed.

Arthur Samuel, an American pioneer in the field of computer gaming and artificial intelligence,
coined the term "Machine Learning" in 1959 while at IBM. Evolved from the study of pattern
recognition and computational learning theory in artificial intelligence, machine learning explores
the study and construction of algorithms that can learn from and make predictions on data

Machine learning tasks are typically classified into two broad categories, depending on whether
there is a learning "signal" or "feedback" available to a learning system:-

SUPERVISED LEARNING

Supervised learning is the machine learning task of inferring a function from labelled training
data. The training data consist of a set of training examples. In supervised learning, each example
is a pair consisting of an input object (typically a vector) and a desired output value.

A supervised learning algorithm analyses the training data and produces an inferred function,
which can be used for mapping new examples. An optimal scenario will allow for the algorithm
to correctly determine the class labels for unseen instances. This requires the learning algorithm
to generalize from the training data to unseen situations in a "reasonable" way.

UNSUPERVISED LEARNING

Unsupervised learning is the machine learning task of inferring a function to describe hidden
structure from "unlabelled" data (a classification or categorization is not included in the
observations). Since the examples given to the learner are unlabelled, there is no evaluation of the
accuracy of the structure that is output by the relevant algorithm—which is one way of
distinguishing unsupervised learning from supervised learning and reinforcement learning.

A central case of unsupervised learning is the problem of density estimation in statistics, though
unsupervised learning encompasses many other problems (and solutions) involving summarizing
and explaining key features of the data.

NUMPY

NumPy is a library for the Python programming language, adding support for large, multi-dimensional
arrays and matrices, along with a large collection of high-level mathematical functions to operate on
these arrays. The ancestor of NumPy, Numeric, was originally created by Jim Hugunin.

NumPy targets the CPython reference implementation of Python, which is a non-optimizing bytecode
interpreter. Mathematical algorithms written for this version of Python often run much slower than
compiled equivalents.

Using NumPy in Python gives functionality comparable to MATLAB since they are both interpreted,
and they both allow the user to write fast programs as long as most operations work on arrays or
matrices instead of scalars.

NUMPY ARRAY

NumPy’s main object is the homogeneous multidimensional array. It is a table of elements (usually
numbers), all of the same type, indexed by a tuple of positive integers. In NumPy dimensions are
called axes. The number of axes is rank.

For example, the coordinates of a point in 3D space [1, 2, 1] is an array of rank 1, because it has one
axis. That axis has a length of 3. In the example pictured below, the array has rank 2 (it is 2-
dimensional). The first dimension (axis) has a length of 2, the second dimension has a length of 3.

[[1., 0., 0.],
[0., 1., 2.]]

NumPy’s array class is called ndarray. It is also known by the alias.

SLICING NUMPY ARRAY

Import numpy as np

a = np.array ([[1, 2, 3], [3,4,5], [4,5,6]])

print 'Our array is:'
Print a
print '\n'

print 'The items in the second column are:'
print a[...,1]
print '\n'

print 'The items in the second row are:'
print a[1...]
print '\n'

print 'The items columns 1 onwards are:'
print a [...,1:]
OUTPUT

Our array is:
[[1 2 3]
[3 4 5]
[4 5 6]]

The items in the second column are:
[2 4 5]

The items in the second row are:
[3 4 5]

The items column 1 onwards are:
[[2 3]
[4 5]
[5 6]]

SCIPY

modules for optimization, linear algebra, integration, interpolation, special functions, FFT, signal and
image processing, ODE solvers and other tasks common in science and engineering.

SciPy builds on the NumPy array object and is part of the NumPy stack which includes tools like
Matplotlib, pandas and SymPy, and an expanding set of scientific computing libraries. This NumPy
stack has similar users to other applications such as MATLAB, GNU Octave, and Scilab. The NumPy
stack is also sometimes referred to as the SciPy stack.

The SciPy Library/Package

The SciPy package of key algorithms and functions core to Python's scientific computing capabilities.
Available sub-packages include:

• constants: physical constants and conversion factors (since version 0.7.0)
• cluster: hierarchical clustering, vector quantization, K-means
• fftpack: Discrete Fourier Transform algorithms
• integrate: numerical integration routines
• interpolate: interpolation tools
• io: data input and output
• lib: Python wrappers to external libraries
• linalg: linear algebra routines
• misc: miscellaneous utilities (e.g. image reading/writing)
• ndimage: various functions for multi-dimensional image processing
• optimize: optimization algorithms including linear programming
• signal: signal processing tools
• sparse: sparse matrix and related algorithms
• spatial: KD-trees, nearest neighbours, distance functions
• special: special functions
• stats: statistical functions
• weave: tool for writing C/C++ code as Python multiline strings

Data Structures

The basic data structure used by SciPy is a multidimensional array provided by the NumPy module.
NumPy provides some functions for linear algebra, Fourier transforms and random number
generation, but not with the generality of the equivalent functions in SciPy. NumPy can also be used
as an efficient multi-dimensional container of data with arbitrary data-types. This allows NumPy to
seamlessly and speedily integrate with a wide variety of databases. Older versions of SciPy used
Numeric as an array type, which is now deprecated in favour of the newer NumPy array code.

SCIKIT-LEARN

Scikit-learn is a free software machine learning library for the Python programming language. It
features various classification, regression and clustering algorithms including support vector
machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate
with the Python numerical and scientific libraries NumPy and SciPy.

The scikit-learn project started as scikits.learn, a Google Summer of Code project by David
Cournapeau. Its name stems from the notion that it is a "SciKit" (SciPy Toolkit), a separately developed
and distributed third-party extension to SciPy. The original codebase was later rewritten by other
developers. In 2010 Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort and Vincent Michel, all
from INRIA took leadership of the project and made the first public release on February the 1st 2010.
Of the various scikits, scikit-learn as well as scikit-image were described as "well maintained and
popular" in November 2012.

REGRESSION ANALYSIS

In statistical modelling, regression analysis is a set of statistical processes for estimating the
relationships among variables. It includes many techniques for modelling and analysing several
variables, when the focus is on the relationship between a dependent variable and one or more
independent variables (or 'predictors'). More specifically, regression analysis helps one understand how
the typical value of the dependent variable (or 'criterion variable') changes when any one of the
independent variables is varied, while the other independent variables are held fixed.

Regression analysis is widely used for prediction and forecasting, where its use has substantial overlap
with the field of machine learning. Regression analysis is also used to understand which among the
independent variables are related to the dependent variable, and to explore the forms of these
relationships. In restricted circumstances, regression analysis can be used to infer casual relationships
between the independent and dependent variables. However this can lead to illusions or false
relationships, so caution is advisable

LINEAR REGRESSION

Linear regression is a linear approach for modelling the relationship between a scalar dependent
variable y and one or more explanatory variables (or independent variables) denoted X. The case of
one explanatory variable is called simple linear regression. For more than one explanatory variable,
the process is called multiple linear regression.

In linear regression, the relationships are modelled using linear predictor functions whose unknown
model parameters are estimated from the data. Such models are called linear models.

LOGISTIC REGRESSION

Logistic regression, or logit regression, or logit model [1] is a regression model where the dependent
variable (DV) is categorical. This article covers the case of a binary dependent variable—that is, where
the output can take only two values, "0" and "1", which represent outcomes such as pass/fail, win/lose,
alive/dead or healthy/sick. Cases where the dependent variable has more than two outcome categories
may be analysed in multinomial logistic regression, or, if the multiple categories are ordered, in ordinal
logistic regression. In the terminology of economics, logistic regression is an example of a qualitative
response/discrete choice model.

POLYNOMIAL REGRESSION

Polynomial regression is a form of regression analysis in which the relationship between the
independent variable x and the dependent variable y is modelled as an nth degree polynomial in x.

Polynomial regression fits a nonlinear relationship between the value of x and the corresponding
conditional mean of y , denoted E(y | x), and has been used to describe nonlinear phenomena such as
the growth rate of tissues, the distribution of carbon isotopes in lake sediments, and the progression of
disease epidemics.

Although polynomial regression fits a nonlinear model to the data, as a statistical estimation problem
it is linear, in the sense that the regression function E(y | x) is linear in the unknown parameters that are
estimated from the data.

MATPLOTLIB

Matplotlib is a plotting library for the Python programming language and its numerical mathematics
extension NumPy. It provides an object-oriented API for embedding plots into applications using
general-purpose GUI toolkits like Tkinter, wxPython, Qt, or GTK+. There is also a procedural "pylab”
interface based on a state machine (like OpenGL), designed to closely resemble that of MATLAB,
though its use is discouraged .SciPy makes use of matplotlib.

EXAMPLE

➢ LINE PLOT

 >>>importmatplotlib.pyplotasplt
 >>>importnumpyasnp
 >>> a =np.linspace(0,10,100)
 >>> b =np.exp(-a)
 >>>plt.plot (a,b)
 >>>plt.show ()

➢ SCATTER PLOT

>>>importmatplotlib.pyplotasplt
>>>fromnumpy.randomimport rand
>>> a =rand(100)
>>> b =rand(100)
>>>plt.scatter(a, b)
>>>plt.show ()

PANDAS

In computer programming, pandas is a software library written for the Python programming language
for data manipulation and analysis. In particular, it offers data structures and operations for manipulating
numerical tables and time series. It is free software released under the three-clause BSD license. "Panel
data", an econometrics term for multidimensional, structured data sets.

LIBRARY FEATURES

➢ Data Frame object for data manipulation with integrated indexing.

➢ Tools for reading and writing data between in-memory data structures and different file
formats.
➢ Data alignment and integrated handling of missing data.

➢ Reshaping and pivoting of data sets.
➢ Label-based slicing, fancy indexing, and sub setting of large data sets.

➢ Data structure column insertion and deletion.

➢ Group by engine allowing split-apply-combine operations on data sets.

➢ Data set merging and joining.

➢ Hierarchical axis indexing to work with high-dimensional data in a lower-dimensional data
structure.

➢ Time series-functionality: Date range generation.

CLUSTERING

Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the
same group (called a cluster) are more similar (in some sense or another) to each other than to those in
other groups (clusters). It is a main task of exploratory data mining, and a common technique for
statistical data analysis, used in many fields, including machine learning, pattern recognition, image
analysis, information retrieval, bioinformatics, data compression, and computer graphics.

Cluster analysis itself is not one specific algorithm, but the general task to be solved. It can be achieved
by various algorithms that differ significantly in their notion of what constitutes a cluster and how to
efficiently find them. Popular notions of clusters include groups with small distances among the cluster
members, dense areas of the data space, intervals or particular statistical distributions. Clustering can
therefore be formulated as a multi-objective optimization problem.

The appropriate clustering algorithm and parameter settings (including values such as the distance
function to use, a density threshold or the number of expected clusters) depend on the individual data
set and intended use of the results. Cluster analysis as such is not an automatic task, but an iterative
process of knowledge discovery or interactive multi-objective optimization that involves trial and
failure. It is often necessary to modify data pre-processing and model parameters until the result
achieves the desired properties.

EMOTION DETECTION MODEL

ALGORITHM

 Data Collection: We have collected the dataset of images of people
expressing different emotions from Kaggle.

 Data Formatting: The dataset was already formatted into different folders of
emotions for both the Train and Test Data.

 Model Architecture: The emotion detection model is built using the
DenseNet169 architecture, a deep convolutional neural network known for its
effectiveness in image classification tasks. The model architecture consists of
a feature extractor and a classifier. The feature extractor is the pre-trained
DenseNet169 model, which has been trained on a large-scale dataset
(ImageNet). The classifier is a series of dense layers that take the extracted
features and predict the emotions present in the input image.

 Training: The model is trained in two stages:

 Stage 1: Training with Frozen Layers - In this stage, only the

classifier layers are trained while keeping the feature extractor
layers frozen. This allows the classifier to adapt to the specific
emotion detection task without affecting the pre-trained feature
extractor's weights.

 Stage 2: Fine-Tuning - In this stage, the entire model, including the
feature extractor layers, is fine-tuned by training it on the emotion
detection dataset. This helps the model learn more specific and
nuanced features relevant to the emotion detection task.

 Testing: The trained emotion detection model achieved an accuracy of
63.04% on the test dataset. The confusion matrix reveals how well the model
performs for each emotion class, identifying any biases or difficulties in
classification. The classification report provides further insights into the
model's performance, highlighting metrics such as precision, recall, and F1-
score for each emotion class. The ROC curve illustrates the trade-off between
the true positive rates for different emotion classes. The ROC-AUC score
quantifies the model's overall performance in discriminating between
emotions.

INTRODUCTION

Emotion detection is an important task in the field of computer vision and
artificial intelligence. It involves recognizing and classifying human emotions
based on visual cues such as facial expressions. In this project, we developed an
emotion detection model using the DenseNet169 architecture and trained it on a
dataset of facial expressions.

PROBLEM STATEMENT

The problem addressed in this project is emotion detection from facial
expressions. The goal is to develop a model that can accurately classify human
emotions based on visual cues provided by facial images. Emotion detection has
various real-world applications, including human-computer interaction, affective
computing, and social robotics. The challenge lies in building a model that can
effectively learn and recognize the complex patterns associated with different
emotions.

SOURCE CODE

Importing Required Libraries

Hyper parameters & Directories

Data Loading & Pre-Processing

Images with different emotions

Data Distribution (count) among different emotions

Data Distribution (count) among different emotions

Summary of the Model

Training model with freezed layers of DenseNer169

Fine Tuning

Training Plots

Visualizing Results – Model Evaluation

Confusion Matrix

Classification Report

Multiclass AUC Curve

ADVANTAGES

 Accurate Emotion Recognition: The developed emotion detection model aims to
accurately recognize and classify human emotions based on facial expressions. It
can potentially provide valuable insights into individuals' emotional states,
facilitating improved human-computer interaction and personalized services.

 Non-Intrusive: Emotion detection from facial expressions is a non-intrusive method
that does not require additional sensors or equipment. It leverages existing visual
information and can be integrated into various devices and applications with a
camera.

 Real-Time Processing: With efficient implementation and optimization, the model

can perform real-time emotion detection, enabling applications to respond and adapt
to users' emotions in real-time.

 Generalization: The use of deep learning models, such as DenseNet169, allows for

the extraction of meaningful features from facial images, enhancing the model's
ability to generalize and recognize emotions in different individuals and diverse
environmental conditions.

DISADVANTAGES

 Limited to Facial Expressions: Emotion detection solely based on facial expressions
may not capture the complete context of emotions. Emotions can be influenced by
other factors such as body language, tone of voice, and environmental cues.
Therefore, relying solely on facial expressions may limit the model's accuracy and
robustness in certain scenarios.

 Subjectivity and Ambiguity: Emotion detection is inherently subjective, as
individuals may interpret and express emotions differently. Additionally, some
emotions may have similar facial expressions, leading to ambiguity in classification.
The model may struggle to differentiate between subtle variations or mixed
emotions, resulting in potential misclassifications.

 Sensitivity to Image Quality: The performance of the emotion detection model
heavily depends on the quality of input images. Poor lighting conditions, occlusions,
or low-resolution images can impact the model's ability to accurately detect and
classify emotions.

 Lack of Contextual Information: Facial expressions alone may not provide enough
contextual information to understand the underlying reasons or triggers for specific
emotions. Understanding the context in which emotions occur is important for a
deeper comprehension of individuals' emotional states.

FUTURE SCOPE

The future scope of this project includes several potential areas of development
and expansion:

 Real-time Emotion Recognition: The current implementation focuses on
static images for emotion detection. Further development could involve
real-time emotion recognition from live video streams. This would enable
applications such as emotion-aware video conferencing, virtual assistants
with emotion-sensitive responses, and emotion-based content
recommendations.

 Multimodal Emotion Recognition: Integrating other modalities, such as

audio and text analysis, with facial expression recognition can provide a
more comprehensive understanding of emotions. Combining facial
expressions with voice analysis or text sentiment analysis can enhance the
accuracy and robustness of emotion detection.

 Emotion Detection in Dynamic Scenarios: Extending the model to detect

emotions in dynamic scenarios, such as analyzing facial expressions in
videos or continuous streams, can provide insights into the temporal
dynamics of emotions. This would be particularly useful in analyzing
emotions during conversations, presentations, or real-world interactions.

 Individualized Emotion Models: Creating personalized emotion models

that adapt to individual users' facial expressions and emotional patterns can
enhance the accuracy of emotion detection. This could involve using
techniques such as transfer learning or fine-tuning to customize the model
for specific individuals or user groups.

 Emotion Recognition in Challenging Environments: Improving the

model's robustness to challenging environmental conditions, such as low
lighting, occlusions, or diverse camera angles, would enhance its practical
applicability. Techniques such as data augmentation, adversarial training,
or domain adaptation can be explored to make the model more resilient to
such challenges.

 Emotion Detection for Special Populations: Emotion detection can be

extended to specific populations, such as children, elderly individuals, or
individuals with neurodevelopmental disorders. Developing specialized
emotion models for these populations can provide valuable insights into
their emotional well-being and enable tailored interventions or support.

 Ethical Considerations and Bias Mitigation: As with any AI-based
system, ensuring ethical and unbiased emotion detection is crucial. Future
research should focus on addressing potential biases, ensuring fair
representation across diverse demographics, and considering ethical
implications, such as privacy and consent.

 Integration with Real-world Applications: Integrating emotion

detection models into various applications, such as mental health
monitoring, personalized recommendation systems, or human-robot
interactions, can unlock new possibilities for improving user experiences
and well-being.

CONCLUSION

In this project, we successfully developed an emotion detection model using the
DenseNet169 architecture and trained it on a dataset of facial expressions. The
model achieved an accuracy of [insert accuracy value] on the test dataset,
showcasing its effectiveness in recognizing and classifying emotions.

The results obtained from the model evaluation provide valuable insights into its
performance. The confusion matrix allows us to analyze the model's behavior for
each emotion class, identifying any specific challenges or biases in classification.
This information can guide further improvements in the model or dataset
collection process.

The classification report provides a comprehensive overview of the model's
performance for each emotion class, including precision, recall, and F1-score.
These metrics reveal the model's ability to correctly identify instances of each
emotion, ensuring a well-rounded evaluation of its effectiveness.

Furthermore, the ROC curve and ROC-AUC score offer a holistic perspective on
the model's overall discriminative power across different emotions. By
examining the curve's shape and the ROC-AUC score, we can assess the model's
ability to distinguish between various emotional states accurately.

